
SpaceWire as a Cube-Sat Instrument Interface
Missions and Applications – Long

Susan C. Clancy, Matthew D. Chase, Anusha Yarlagadda, Michael D. Starch, James P. Lux
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA, USA
susan.c.clancy@jpl.nasa.gov

Abstract— SpaceWire is used in the control and data interface

for an instrument on a pair of small satellites, one of which was
launched in summer 2017. The instrument SpaceWire interface is
implemented in a Field Programmable Gate Array as an
instantiated core controlled by a LEON3FT CPU, which is also
implemented as an instantiated core. The UT699 processor in the
flight computer provides the spacecraft side’s SpaceWire
interface.

A simple message based protocol consisting of four message
types was defined, based on existing SpaceWire standards. One
was for passing commands to and responses from the instrument
in the form of text strings similar to those from a system console
where each line of text is passed in a SpaceWire message. Another
was for passing spacecraft time to the instrument. The third was
for transferring files using a subset of the Remote Memory Access
Protocol (RMAP). The fourth was for retrieving science data from
the instrument.

A set of user application programming interface (API) routines
provided an abstracted interface to both the serial console (used
during debug) and the SpaceWire device interface.

Early instrument development and testing was done with a set
of utilities that controlled a Star-Dundee USB-SpaceWire brick
providing a user interface similar to a serial console terminal
emulator with the addition of file and data transfers. Later in the
integration and test process, these utilities were integrated with the
COSMOS ground systems software used for spacecraft control,
providing a seamless transition from standalone instrument tests
to benchtop flat-sat test and full spacecraft level tests.

Keywords—cubesat; SpaceWire; LEON3FT; RMAP; COSMOS;
USB-Spacewire brick

I. INTRODUCTION

SpaceWire is used in the command and data interface
between an instrument payload and the host spacecraft. The host
spacecraft is a standard 3U (approximately 30cm x10cm x10cm)
spacecraft from Space Dynamics Laboratory in Logan, UT. The
spacecraft provides the support infrastructure: solar panels,
batteries, flight computer, GPS receiver, and attitude control.
The instrument is based on the JPL Iris radio [1] which uses a
Xilinx Virtex 6 Field Programmable Gate Array (FPGA) that
serves both as a digital signal processor and as the instrument
controller. The instrument runs the RTEMS operating system
[2] on an instantiated LEON3FT CPU core. SpaceWire is used
to pass commands to the spacecraft as ordinary human readable
strings, and the spacecraft sends back telemetry, also as human
readable strings.

The instrument is commanded to collect data for about 10
minutes at a user specified time. The digital signal processing
algorithms produce data at about 5 Mbps which is stored in flash
memory in the instrument. The ground operators command the
spacecraft to requests the science data, which is streamed out to
the spacecraft at high speed over the SpaceWire interface where
it is stored in spacecraft flash memory. Ultimately, the
spacecraft sends the data to a ground station when requested.

There are provisions for the spacecraft to transfer files to and
from the instrument using a subset of the RMAP protocol [3]. In
addition, the instrument receives periodic time updates passed
from the onboard spacecraft GPS receiver once a second, so that
the time of capture can be set accurately.

II. PHYSICAL IMPLEMENTATION

The SpaceWire interface on the instrument side was
implemented using the Gaisler GRSpW2 core instantiated in the

Virtex 6 FPGA, along with the LEON3FT CPU core. The 4
LVDS pairs are directly connected to the pins with no external
driver or receiver to minimize changes to the existing processor
board design. The spacecraft Single Board Computer (SBC)
[4,5] uses the UT699 CPU, which includes the SpaceWire
interface as part of the chip. CubeSat’s are physically small and
compact, Omnetics NanoD (MIL-DTL-32139) connectors were
used throughout the spacecraft, with twisted pair wires for the 5
cm cable. The SpaceWire interface used a 9 pin configuration,
with the pin assignment identical to the usual SpaceWire Micro-
D.

III. PROTOCOL

The interface between the instrument and the spacecraft uses

four different variable length packet formats, each identified by
a unique protocol identifier (PID), shown in Table III-1. The
use of different PIDs allows easy separation of the messages

Figure II-1 Spacecraft-Instrument Interfaces

Spacecraft
Single Board

Computer
UT699

Instrument
Virtex 6

LEON3FT

GRSpW2 Inst Signal
Processing

GPS
NAND
FlashTime-

keeping

SpW

1pps
Interface Card

Sensor
Electronics

when received, without needing to further parse the message to
determine the content. For the most part, the spacecraft Flight
Software (FSW) just passes the entire SpaceWire message
through unchanged in either direction. The spacecraft command
header is stripped off and the embedded SpaceWire command
message is passed through to the instrument. The protocols
described below are those processed by the instrument.

Table III-1 Protocol Ids

PID PROTOCOL ID DESCRIPTION
0x01 RMAP – used for file and binary data transfer

to/from the instrument
0xF0 text (ASCII) data to from the instrument (stdin,

stdout)
0xF1 Sampled Data as VITA-49 packets returned from

the instrument
0xF2 GPS Binary message to the instrument

The SpaceWire packets follow the format defined in the
SpaceWire Specification [6]. The packet includes a destination
address, payload of application specific data, and an End of
Packet (EOP) marker as shown in Figure III-1.

For an instrument SpaceWire packet, the address was always
0xFE, regardless of whether it was sent to or received from the
instrument since it was a point to point link. The instrument
includes the Protocol Id (PID) which identifies the packet type,
followed by the payload data, and ending with the Cyclic
Redundancy Check (CRC) used to detect data corruption.

A. Serial Console Emulation

The instrument software provides a serial console style
interface with variable length text commands which produce
variable length text response messages. These command and
response messages are identified using the 0xF0 Protocol Id. The
API routine used by the software to send text messages inserts a
text sequence number and the instrument time before each
message.

B. File Transfer To the Instrument

File transfers to and from the spacecraft use a subset of the
existing RMAP protocol. These messages use the 0x01
Protocol Id and the RMAP format which includes the destination

target logical address (TLA), RMAP header fields, data, RMAP
CRC, and end of packet marker. The RMAP header fields
identify the RMAP instruction, key, initiator address,
transaction id, address, length as shown in Figure III.4. The
address fields define the position within the file being
transferred and the length is the length of the data portion within
the message. Write Reply messages are returned to the
spacecraft with the format given in Figure III-5 if a Write-With-
Reply instead of a Write-Without-Reply instruction is used.

 To send a file, an FWRITE command is sent giving the name
of the file and the maximum length of the file. The file length
allows allocation of the space in the in-memory file system in
advance of the transfer. Then all the RMAP Write packets are
sent with the file contents. The payload data from each RMAP
Write message is written to the specified file at the address in
the message header. After all the RMAP data messages are sent,
an FCLOSE command is sent. RMAP messages received when
there is no active FWRITE are discarded with an error message.

C. File Transfer From the Instrument

Files are transferred from the instrument to the spacecraft
by using RMAP Read messages as shown in Figure III-6. An
FREAD command is sent to the instrument, and the instrument
replies with a series of RMAP Read messages containing the
file contents. The Transaction Id is used a s a sequence number
and used to detect missing messages by the ground processing.

Destination
Address

Payload EOP

Figure III-1 SpaceWire Packet Format

Figure III-2 Packet Format

0xFE PID EOPData Data Data Data CRC

Figure III-4 RMAP Write Format (data to instrument)

Figure III-5 - Write Reply (from instrument, if requested)

Figure III-3 Text Packet Format

Figure III-6 - RMAP Read (data from instrument)

D. Science Data Transfer from the Instrument

The primary science output of the instrument is long streams
of sampled data representing the received sensor signals. The
data is encoded in the Virtual Radio Transport (VRT) packets
defined in the VITA-49 specification [7]. A SpaceWire message
was defined that contained the entire VRT packet with the 0xF1
protocol ID. A VRT packet stream consists of periodic context
packets interspersed in a stream of data packets, each containing
250 samples. The context packet that precedes the data packets
identifies information about the data stream.

The command which starts sending science data allows a
pacing delay to be inserted between each message, typically on
the order of 10 milliseconds, to limit the overall data rate to the
spacecraft.

E. GPS Time to the Instrument

The spacecraft uses a GPS receiver to determine the time,
which is provided to the instrument via a GPS message sent as a
0xF2 Protocol Id message. The original design of the instrument
used the time distribution message using a CCSDS
Unsegmented Time proposed by Habinc, et al. [8]. However, to
minimize the changes in the existing spacecraft flight software,
a simpler message that encoded the GPS week and milliseconds
was used, as shown in Figure III-8.

The GPS milliseconds represents the number of milliseconds
that have elapsed between the GPS epoch and the next GPS one-
pulse-per-second tick (1PPS), which is received on a discrete
input line. As each GPS message is processed, the given GPS
time is saved and the system clock ticks are stored with the
associated 1PPS tick. The instrument internal clock is latched
on each 1pps, along with the last received GPS Milliseconds
value, which is used to calculate GPS time from instrument
internal clock time. Software logic detects missing 1pps pulses
or GPS time messages that are out of sequence.

IV. SPACEWIRE API

The instrument software implements a simple message
passing style API to provide a consistent interface to the
SpaceWire hardware. Transmit and receive tasks handle data
sent or received and the GAISLER SPW2 SpaceWire device
driver library functions perform the low-level device operations
with the hardware. The “spacewire_init” function combines
some of the low-level function calls needed to initialize the
hardware into a higher level API function call.

 The API functions (Table IV-1) format data sent from the
instrument into a SpaceWire message and queue it as a transmit
request to the transmit queue (TxQ). An instrument user
application sending data calls one of the three API “send”
functions to send data as text (PID=F0), RMAP data (PID=01),
or VITA-49 VRT data (PID=F1). The transmit task (See Figure

IV-1) dequeues each TxQ entry and calls the SPW2 spw_tx()
and spw_checktx() device driver functions. The spw_tx()
function transmits the packet out over SpaceWire. The
spw_checktx() function blocks until the packet is transmitted or
fails with an error. The transmit success and fail statistics are
updated and can be captured and reported by the
“spacewire_status” command.

The receive task (see Figure IV-2) handles three types of
incoming packets which are identified by their PID. These are
text commands (PID=0xF0), RMAP WRITE data (PID=0x01),
or GPS data (PID=0xF2). The SPW2 spw_rx() and
spw_check_rx() device driver functions are called within the
receiver task to receive packets. The spw_rx() function sets up
the input buffer to receive data and the check_rx() blocks until
data arrives or detects a failure. The receive success and fail

Figure III-8 GPS Packet Format

Figure IV-2 SpaceWire Transmit Software Architecture

Figure III-7 VITA-49 Data Packet

Table III -1 SpaceWire API

FUNCTION NAME DESCRIPTION
spacewire_init() Initialize and sets up the

buffer for sending and
receiving data

send_data_packet(len,tid,buf) Send an RMAP data packet

send_text_packet(len,buf) Send a text packet
send_vita49_packet(len,buf) Send VITA-49 packet
send_write_reply_packet(len,
id,buf)

Send fwrite reply

set_fwrite_params(fn, fsize) Updates file IO name and
size from the FWRITE
command

write_packet_to_file(pkt) Decodes an RMAP packet
and writes the data to a file

dump_packet(buf,len) Outputs packet data as a
series of text messages with
HEX ASCII encoded data
values

print_diag_packet(buf,
len,opt)

Decodes and outputs the
contents of a packet in a
series of text messages

statistics are updated and can be captured and reported by the
“spacewire_status” command.

Incoming text messages are forwarded to the command input
message queue which is serviced by the command processor.
Any incoming RMAP WRITE data packets are decoded and the
data is written to the file previously opened by an FWRITE
command. Any incoming GPS data packets are processed by
calling the GPS API.

The integrity of the incoming SpaceWire messages is
checked using the data CRC and, if it matches the expected CRC
value, the message is handled. If not, a receive error count is
incremented and the message is discarded.

There are 4 API entry points shown in Table IV-1 which map
to specific commands that the instrument can receive: fwrite()
and fclose() used before and after importing data into a file, a
“configure” command to enable diagnostic messages, and a
“status” command to report SpaceWire API statistics.

Table IV-1 SpaceWire Related Commands API

FUNCTION DESCRIPTION
fclose_cmd Closes a file previously opened

by the FWRITE command
fwrite_cmd Creates a zero-filled file of the

specified length in preparation
for writing incoming RMAP
data

spacewire_cfg_cmd Configures SpaceWire API
diagnostic option on or off;
When diagnostics are on, the
contents of sent and received
messages is output for
debugging

spacewire_status_cmd Reports SpaceWire API
statistics

V. GROUND SUPPORT SOFTWARE

The spacecraft ground system and much of the testing uses
the open source COSMOS system from Ball Aerospace [9, 10].

The COSMOS system uses the Ruby language with procedures
and modules written in Ruby to run test sequences, send
commands, receive and format telemetry. During the
development of the instrument, we had 3 fundamentally
different use configurations:

• Test Bench Configuration - Standalone instrument on
the bench with a Star-Dundee USB-SpaceWire brick

• FlatSat Configuration - Instrument connected to flatsat,
using a RS422 link

• Spacecraft Configuration - Instrument integrated into
the spacecraft

The Test Bench Configuration had a laptop computer with
the Star-Dundee USB SpaceWire brick and associated tools and
drivers connected via SpaceWire to the instrument. This
configuration was used for the initial development and testing of
the instrument hardware and software.

The FlatSat Configuration is a breadboard configuration
including non-flight qualified instances of the spacecraft Single
Board Computer and Interface Card. The spacecraft radio is
emulated in the FlatSat by a serial port connected to a PC. The
FlatSat includes a flight-like SpaceWire interface with an uplink
/ downlink radio interface simulated over an RS-232 connection.

The Spacecraft Configuration has the instrument integrated
into the spacecraft and uses a ground station RF link for the
uplink/downlink interface.

These configurations were accommodated by creating a
Ruby software class hierarchy (see Figure V-1) that supported a
standard (configuration independent) interface for interacting
with the instrument. In this way, all command scripts, unit-tests,
and other ground utilities operate with the instrument without

Figure V -1 Different configurations support a standard

interface

Operational
Command Script

System Test and
Calibration Scripts Unit Test

Generalized Instrument Interface

Direct SpaceWire
Interface

USB-Spacewire
Device Drivers

FlatSat Interface

Serial Port Radio
Emulation

Integrated
Instrument

Ground Station
Radio Interface

Instrument Instrument Instrument

FlatSat SpacecraftSp
W

USB-Spacewire

RS
-4
22

RF

Ruby Modules used by Cosmos

Class Module GenericInstrumentInterface

Sub Classes of
GenericInstrumentInterface

Figure IV-2 SpaceWire Receive Software Architecture

needing to be altered when the physical configuration changed.
Simply using a class’s method, e.g. “send_inst_command”
allows the tests to works on any interface or configuration.
Ground processing software only needed to be written once to
support all three testing configurations.

Ruby classes supporting the generic interface were created
to automatically separate the incoming telemetry, a combination
of instrument ASCII, file data, and VRT packets, into
appropriate streams. These streams supported testing of the
instrument and software in a flight-like environment.

ACKNOWLEDGMENT

This work was carried out at the Jet Propulsion Laboratory
in Pasadena (JPL), California, under contract with the National
Aeronautics and Space Administration. References herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the U.S. Government or
the Jet Propulsion Laboratory.

©2018 California Institute of Technology. Government
sponsorship acknowledged.

REFERENCES

.

[1] Jet Propulsion Laboratory, “Iris V2.1 CubeSat Deep Space Transponder”,
https://www.jpl.nasa.gov/cubesat/pdf/Brochure_IrisV2.1_201611-
URS_Approved_CL16-5469.pdf

[2] OAR Corporation, Real Time Executive for Multiprocessor Systems –
RTEMS, https://www.rtems.org/

[3] European Cooperation for Space Standardization, “Space Engineering;
SpaceWire Links, nodes, routers and networks,”, ECSS-E-ST-50-12C,
July 2008

[4] Space Dynamics Laboratory, “PEARL Spacecraft Platform”,
http://www.sdl.usu.edu/downloads/pearl.pdf, downloaded 25 Feb 2018.

[5] Q.Young, R. Burt, M. Watson, L. Zollinger “PEARL CubeSat Bus-
Building Toward Operational Missions”, Cubesat Summer Workshop -8-
9 August 2009, Cal Poly San Luis

[6] European Cooperation for Space Standardization, “Space Engineering;
SpaceWire Links, nodes, routers and networks,”, ECSS-E-ST-50-11F,
Dec 2006

[7] ANSI, “ANSI/VITA 49.0-2015 VITA Radio Transport Standard”,
https://shop.vita.com/ANSI-VITA-490-2015-VITA-Radio-Transport-
VRT-Standard-AV490.htm

[8] S. Habinc, A. Sakthivel, M. Suess, “SpaceWire – Time Distribution
Protocol”, 2013 International Spacewire Conference.

[9] R. Melton, “Ball Aerospace COSMOS open source command and control
system,” Small Satellite Conference, August 2016.

[10] Ball Aerospace, “COSMOS – The user interface for command and control
of embedded systems,” http://cosmosrb.com/, retrieved 25 Feb.

